1. Determinant of a 3x3 matrix:
\[|A| = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})\]2. Adjoint matrix:
\[adj(A) = \begin{bmatrix} C_{11} & C_{21} & C_{31} \ C_{12} & C_{22} & C_{32} \ C_{13} & C_{23} & C_{33} \end{bmatrix}^T\]Where \(C_{ij}\) is the cofactor of element \(a_{ij}\).
3. Inverse matrix:
\[A^{-1} = \frac{1}{|A|} adj(A)\]We can verify our result by multiplying A with its inverse (if it exists):
Since the determinant is zero, the matrix is not invertible, and we cannot perform this verification.
L'inverse d'une matrice carrée A, notée A^(-1), est une matrice qui, lorsqu'elle est multipliée par A, donne la matrice identité. Pour une matrice 3x3 A, si A^(-1) existe :
\[A \cdot A^{-1} = A^{-1} \cdot A = I_3\]Où I_3 est la matrice identité 3x3.
Pour une matrice 3x3 A, son inverse est donnée par :
\[A^{-1} = \frac{1}{|A|} \cdot adj(A)\]Où : |A| est le déterminant de A adj(A) est l'adjointe (adjugate) de A
Le déterminant d'une matrice 3x3 A = [a_ij] est calculé comme suit :
\[|A| = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})\]L'adjointe d'une matrice 3x3 A est la transposée de sa matrice des cofacteurs :
\[adj(A) = \begin{bmatrix} C_{11} & C_{21} & C_{31} \\ C_{12} & C_{22} & C_{32} \\ C_{13} & C_{23} & C_{33} \end{bmatrix}\]Où C_ij est le cofacteur de l'élément a_ij.
Trouvons l'inverse de la matrice A :
\[A = \begin{bmatrix} 4 & 7 & 2 \\ 2 & 6 & 3 \\ 1 & 5 & 8 \end{bmatrix}\]1. Calculer le déterminant :
\[|A| = 4(6 \cdot 8 - 3 \cdot 5) - 7(2 \cdot 8 - 3 \cdot 1) + 2(2 \cdot 5 - 6 \cdot 1) = 4(48 - 15) - 7(16 - 3) + 2(10 - 6) = 132 - 91 + 8 = 49\]2. Calculer la matrice des cofacteurs :
\[C = \begin{bmatrix} 33 & -3 & -9 \\ -31 & 30 & -5 \\ 13 & -18 & 10 \end{bmatrix}\]3. Transposer pour obtenir l'adjointe :
\[adj(A) = \begin{bmatrix} 33 & -31 & 13 \\ -3 & 30 & -18 \\ -9 & -5 & 10 \end{bmatrix}\]4. Diviser par le déterminant pour obtenir l'inverse :
\[A^{-1} = \frac{1}{49} \begin{bmatrix} 33 & -31 & 13 \\ -3 & 30 & -18 \\ -9 & -5 & 10 \end{bmatrix} = \begin{bmatrix} \frac{33}{49} & -\frac{31}{49} & \frac{13}{49} \\ -\frac{3}{49} & \frac{30}{49} & -\frac{18}{49} \\ -\frac{9}{49} & -\frac{5}{49} & \frac{10}{49} \end{bmatrix}\]Nous pouvons créer gratuitement une calculatrice personnalisée rien que pour vous !
Contactez-nous et donnons vie à votre idée.